Calculus AB
 4-6
 Trapezoidal Rule

Use both the Trapezoidal Rule and the Midpoint Rule with $n=4$ to approximate each definite integral. Then compare to the calculator approximation. (pg 316)

$$
\begin{aligned}
& \text { 4) } \begin{aligned}
& \int_{2}^{3} \frac{2}{x^{2}} d x=\sum_{i=1}^{4} \frac{1}{2}\left[F\left(x_{i-1}\right)+F\left(x_{i}\right)\right] \Delta x \Delta x=\frac{1}{4} \\
& \frac{1}{2}\left[\binom{\left.\frac{1}{2}+\frac{32}{81}\right)+\left(\frac{32}{81}+\frac{8}{25}\right)+\left(\frac{8}{25}+\frac{32}{121}\right)}{x_{0}}\right.\left.\begin{array}{l}
x_{0}=2 \\
x_{1}
\end{array}\right) \\
& x_{3}=\frac{9}{4} \\
& x_{3}=\frac{5}{2} \\
& x_{3} x_{3} \\
& x_{4}=\frac{11}{4}
\end{aligned} \\
& \left.+\left(\frac{32}{121}+\frac{2}{9}\right) \frac{1}{4} \frac{x_{3}}{2} .335 \text { ants }^{2}\right] \\
& \text { calculator } \frac{1}{3}
\end{aligned}
$$

Assignment
Pg. 316
1, 11, 17
Use both the Trapezoidal Rule and the Midpoint Rule for each.

